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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE No. 1819

THE RESPONSE OF PRESSURE MEASURING SYSTEMS
TO OSCILLATING PRESSURES

By Israel Taback
SUMMARY

A method 1s presented for calculating the response and lag in
pressure measuring systems subjected to steady-state sinusoidally
varylng pressures. The pressure system is assumed to consist of an
Inlet restriction, tubing length, and connected instrument volume. The
material presented is limited by the fact that no theoretical method of
predicting the attenuation cheracteristics of the tubing is given. This
limitation is not severe, however, as thils characteristic may be experi-
mentally determined for given tube sizes and pressure frequencies.

Experimental data for some sample systems tested are presented and
show good agreement with calculated values. The resulte are presented
In such fashion that the qualitative effect of varying the dimensions
of system camponents is apparent. It 1s therefore possible, once the
attenuatlon characteristics of the tube are determined, to design a
system with a required frequency response by a trial-and-error variation
of parameters.

INTRODUCTION

Of major Interest in many test installations is the response of
pressure-distribution systems to rapidly varying pressures, both where
these pressures must be accurately measured and where unwanted oscilla-
tlons must be filtered out or eliminated. When such pre8sures are
measured, the pressure sensing element is normally installed as close
to the point of measurement as possible. When this installation is
not feasible, connecting tubing must be employed with the consequent
possibllity of errors caused by resonance or attenuation in the tube.
Methods of calculation of the response of pressure systems to small-
amplitude steady-state sinusoidal pressures based upon electrcomechanical
analogies have been previously developed (reference 1), but little use
has been made of these methods, both because of the large amount of
tedious calculation necessary for the solution of even simple pressure
systems and because of the lack of information as to whether the
equations were valid for pressure oscillations of large amplitude. This
paper has been prepared to present a more convenient method of calculating
response and lag in pressure systems. The main emphasis has been placed on
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2 NACA TN No. 1819

simplifying the necessary equations to the point where they cen be easily
applied to practical instrumentation problems. The material consequently
is in such form that the qualitative effect of varylng the components of
a pressure gystem ls easlly visualized.

In support of the thecretical methods presented, sxperimental data
have been secured on various pressure systems in the frequency range up
to 70 cycles per second. Both the frequency range and pressure systems
tested were chosen as being representative of conditicns which would be
encountered in flight and wind-tunnel installations.

SYMBOLS
a velocity of propsgatlion, feet per second
A attenuation factor, secondsl/2 per foot
C capacity, farads
E voltage, volts
f frequency, cycles per second
fo tube resonant frequency, cycles per secand
I current, amperes
k ratio of specific heat, CP/CV
1 tube length, feet
L inductance, henries
Pav mean pressure in tube, pounds per square foct
AP pressure difference, pounds per sguare foot
r radius, feet
R resistance, ohms
v volume, cubic feet
Y shunt admittence of tube, foot5 per pound-second
Z geries Impedance, pound-seconds per foot‘5
ZO characteristic Impedance of tube, pound-seconds per foot>
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a attenuation constant, 1/feet
B Propagetion constant, radians per foot
A wave length, feet
Pav mean density in tube, slugs per cubic foot
) coefficlent of viscosity, pounds per foot-second
w engular frequency, radians per second
Subscripts:
d quantity exlsting at 1nlet restriction or restriction parameter
r quantity existing at instrument or instrument parameter
S quentlty existing at pressure-system inlet
THEORY

General Theory

The measurement of rapidly varying pressures requires in most cases
that a pressure instrument be connected to the measuring point through a
finite length of connecting tube. The tube opening may be restricted by
a connector of smaller opening, elther because of aerodynamic consider-
ations or because the response of the measuring system to the oscillating
Pressures must be adjusted. In most cases exposing the pressure-
measuring diaphragm to a reference pressure 18 necessary. This procedure
requires that the diaphragm be installed so that it 1s exposed to a refer-
ence pressure volume which may be connected by means of tubing to a
reference pressure source. The reference volume and connecting tubing
is hereinafter referred to as the reference pressure system. For the
purpose of the following enalysis, 1t will be considered that: (1) the
response of the Instrument may be separately evaluated or is constant
throughout the frequency range, and that (2) deflections of the sensitive
element are sufficlently small so that negligible changes in intermal
volume occur and no energy is transferred to the reference pressure
systems.

The air column in a tube has mess inertia, elasticity, and can
dissipate energy with 1ts motlon; consequently, as 1s generally known,
wave motion can be propagated along its length. The equations governing
this motion have been previously derlved for small-amplitude pressure
variations (references 1 and 2) and are exactly similar to the equations
which govern the propagation of electrical waves on transmission lines.
As these equations already have been developed, it is relatively easy
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to describe the behavior of the pressure system In lerms of the analogous
electrical system by use of the usual electrical notatlion (reference 3).

The electrical terms and the equivalent acocustical terms used herein are

shown in the following table:

FElectrical Equivalent acoustical
Term Unit [Symbol Term Unit Symbol

inductance| henries| L inertance pound-secondse per| L
footb

capacity farads C volumetric foot? per pound C

capacity

reslgtance| ohms R flow resistance| pound-seconds per R
foot? '

current amperes T volume flow feetd per ascond Q

voltage volts E pressure pounds per foot P

In acoustical terms (reference 4), the inductance per unit length of line

I = Bﬁl, the capacitance per unit length C = 335—
b1e e kPav

per unit length R = %; (the latter beilng dependent on the type and

, and the resistance

amplitude of flow).

The behavior of the system can then be defined by the general
equations for a transmission line

Eg = Epcosh VZY 1 + IpZosinh \JZY 1 (1)
E
Ig = I.cosh \ZY 1 + Z—Z sinh \ZY 1 (@)
where
Z =R+ jJuL
Y = JoC

The gquantity ‘fZY is a complex nuber and may thorcore be written as

VZY = a + 3B (3)

where a 1s an attenuation constant determined by the decrement in
pressure amplitude per length of tube and B 1s a propagation constant
or phase-angle change per wnit length of tube as defin=d by the followlng
equation:

_ 2nf
~ Propagation velocity

B
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The quantity Z, 1s designated the characteristic impedance of the tube
Z=Z=\@=M ()-#)
o Y Y Y
Equation (1) may be rewritten to give

E Z
i}§ = cosh \’ZY 1+ -Z—o sinh \'ZY 1 (5)
r xr

Substituting equation (3) into equation (5) and simplifying by trigono-
metric substltutions gives

E _
= =\/sinh2al + cos®p1 é;an ! (tan B2 tanh ai)
Er
z |
) 2 2 -1(ten B1
+ Z, sinh“al + sin“Bl Zta.n (tanh — (6)

Equation (6) defines the ratio of the voltage or pressure amplitude
at the open end of the tube to the amplitude existing at the pressure
capsule. The reciprocal of this ratio is called hereln the response of
the system. The right-hand terms in equation (6) are given in polar
coordinates and must be added vectorially at the indicated angles.

Simplified Theory

Characteristics of system having negligible Instrument volume.- If
the pressure capsule 1g sufficiently small, negligible air flow occurs at
the instrument end of the tube, Z,. approaches infinity, and equation (1)
reduces to

P Eg
T cosh \[ZY 1 (1)
% = <sj11112a2 + cosg@l/gltan‘l(tan Bl tanh al) (8)
r

Further, if the tube 1s of sufficiently large diameter, negligible
attenuation of the pressure wave occurs in the tube, a approaches zero,
and equation 8 simplifies to

—= = cos Bl (9)
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At resonance frequencies, equation (9) becomes zero and the

response ;é becomes infinite. The following simple relationship can

then be derived for the determination of the resonant frequency:

cos Bl = O (10)
_ enfyl _n 3t 5n
Bl = == =2, 2, F ... (11)
where
_8 3 5
fy = L7 Ei’ b1 °°° (12)

where f, 18 the resonant frequency of the tube with no attached volume.
As the wave length of a pressure wave 1s given by the relation fA = a,
equation (12) indicates that, at resonance frequencies, the tube length
is an odd multiple of 1/4 wave length.

Figure 1 i1s a plot of response and phase angles based on equations (8)
and (9) for simple systems having zero or finlte sttenuation.

Characteristics of system having an inlet restriction.- In a similar
system having negligible instrument volume so that I, sapproaches zero,
the effect of adding a constriction at the tube inlet may be evaluated as
indicated in the following discussion.

For restrictions which are short in length compared to 1 wave length,
the flow impedance congists of a resistance caused by viscous pressure
losses and an inertance caused by the mass of alr in the restriction.

As derived in reference 5,

3 [ 8u L \)
2. = —_— = | 1
a nrd2<;rd2 BJDDaV (13)

This Impedance causes a pressure loss,
Es - Eg' = IsZq (14)

where Eg 1s the appllied pressure and ES' is the pressure applied
to the tube past the restriction.

From equations (1) =nd (2), when I, equals zerc

Eg' = E,. cosh \[ZY 1 (15)
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E
Ig =5 sinh \[ZY¥ 1 (16)
ZO

By the substitution of values from equations (15) and (16) into
equation (14),

Eg - Eg' Zg

T =z, tenh V2V 1 (17)
E z
=7 = 1+ 5 tann(al + JB1) (18)
S o

Equation (18) was derived to secure the ratio of the pressure applled
to the pressure existing in the tube past the restriction. The magnitude of
the over-all response of the tube and restriction can now be secured by
multiplying the effectiveness of the restriction, as given by equation (18),
by the relation for the tube without the restriction, as given by equation (8).

P Es XEg' Bg
PI‘ B EI‘ EI‘ ES
-z
= Ll + Z—d tanh(al + JBZE] (sinh%z + cos251)1/2 [ian'l(tan Bl tanh al)
(8]
(19)

The effectiveness of the restrictlion can be shown to vary with the
applied frequency and the tube characterlistice. In order to visualize the
effect of the constriction on the response of the system, equation (18)
may be rewritten by trigonometric substitution

Es Z3( tanh al + ] ten Bl
= + —
i Zol+JtanhaZtanB?,> (20)
At antiresonance frequencies (Bl = 0, =, nx),
tan Bl = O and equation (20) reduces to
Es 24
fé-r=1+-z—otanhaz (21)
At resonance frequencies (BZ = %, %?, %? B
tan Bl = o and equation (20) reduces to
E Z
e (22)
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For the case of a resonant tube tanh ol << 1 and therefore it can
be seen from equations (21) and (22) that the restriction is extremely
effective in reducing large ampllitude resonances but has only a negli-
gible effect at antiresonance frequencies.

In the case of a large-dismeter tube wherein the attenuation is
negligible, a approaches zero and equation (19) reduces to ]

Pg _ Eg _ < Eg :

TR - ]_+Zotanhjﬁl)cos Bl (23)
_l}i’_s = cos Bl + J—Z~(—i sin B1 (24)
r ZO

The impedance of a small-dlameter constriction 13 almost a pure
resistance since the viscous forces which cause pressure losses are much
larger than the Inertia forces caused by the mass of air in the constric-
tion. The ratio of the impedances Zd/Zo therefore closely approaches
a real mmber and equation (24) can be rewritten In polar coordinates to
give

Pg o 74 ~]1/2 -1 Z%a |
f; = Eos B1 +<Zo gin BZ) /tan ]{\Zo tan Bl (25)
Z
d
When —Z; =1,

2o1lp (26)

A plot of equation (25) 1s given in figure 2 for two sssumed values
of the ratio Zd/zo' As noted previously, the restriction at the tube
inlet 1s extremely effective at resonence frequencies but has no effect
upon the response at antiresonance frequencles. The principal difference
between an adjustment to the response of = system by means of small-
dlameter tubing or an inlet restriction may be clearly seen from a com-
parison of figures 1 and 2. Although 1t is possible, by use of a large-
dlameter tube and a sulteble inlet restriction, to sccure unit response
over a large frequency range, the use of a small-dismeter tube inherently
causes decreased response at higher frequencies.

Cheracteristics of pressure systems having instrument volumes.-
Pressure-measuring instruments which are designed to have uniform response
over a wide range of frequencles are necessarily designed with high-
frequency, low-deflectlon-type diaphragms. The instrument impedance in
such case 1s a function only of 1ts volumetric capaclty and can be written

1 kPgy
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The characteristic impedance of the tube as given by equation (L) is

_at 4B =(ch + JBL)KPyy
Y Jortre

(28)

The ratio of these impedances, which appears In equation (6), is

z

- 2 o+ 0T s

For a given tube diameter and length the value of equation (29) depends
directly on the ratio of the volume of the instrument to the total volume
of the tube. Equation (6) may now be altered to include only values of
real quantitles and phase angles,

o

P, 1 '
P—S = (sinhgcxl + c08261> /2[ tan"(tan B1 tanh «l) + g Eal)g
r nrel

OB ot s ) ) o0

In the case of a large-diameter tube in which a approaches zero,
equation (30) reduces to

P V..
- = cos Bl - —75= Bl sin Bl (31)
r nr-1

A plot of equation (31) is given in figure 3 for two values of the
Vr
nrll
system decreases with an increase in instrument volume. It also shows
that instruments having volumes of the same order of megnitude as the
total tube volume cause a significant decrease in response at higher
frequencies.

ratio

+ The plot indicates that the resonant frequency of a pressure

At the resonant frequency of the tube with attached instrument
volume, eguation (31) may be set equal to zero so that

v
cos Bl = —— Bl sin B (32)
nrgl
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Then,

Vr - cot Bl
el P?

If values from equations (11) and (12) are substituted in equation (33),

(33)

cot(i fresonance)
r N2 T (34)
a1 T fresonance

2 fo

Equation (34) offers a simple method for estimating the lowest resonance
frequency of a tube and volume system. This equation is plotted in
figure 4 so that 1t is possible, if only the physical dimenslons of a
pressure system with negligible tube attenuation are known, to use this
chart to determine the resonant frequency of the system.

Effect of appreclable instrument deflections and reference pressure
gystems on the response of pressure systems.- The analysis of the response
of a pressure system when the pressure dlaphragm is sufficlently deflected
o that 1t can transmit energy into a reference pressure system is con-
sidered beyond the scope of this work. Although the effect on the response
is small in most cases, experimental evidence of the character of these
effects is shown herein.

LIMITATIONS OF THEORY

Numerical solutions of the equations presented herein can be secured
1f the parameters B and o &are known. The value of B can be calcu-
lated from the velocitiles of propagation plotted in figure 5. This
figure is based on the Raylelgh formule for propagation in tubes (refer-
ence 2) and, for ease of computation, upon a velocity of propagation
of 1000 feet per second in free air. Values of a have been calculated
by varlous investigators for sound pressure amplitudes; however, it is
difficult to predict its velue for large pressure amplitudes since steady-
state laminar flow does not exlst in the tube. Refercnce 6 presents a
semiempirical equation which Indicates that the attenuation constant «
varles with the following factors:

(a) Directly as the square root of the applied freguency
(v) Inversely as the square root of the mean density of the fluild

(c) Inversely with the tube diemeter
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| (d) Directly as the square root of the "effective viscosity." The
effective viscosity 1s shown to depend upon the Reynolde number of the
flow in the tube, which in turn is directly dependent upon pressure
amplitude and frequency.

The effects of factors (a) and (c) on the values of a have been
checked by the experimental data presented; however, lack of suitable
equipment has made 1t impossible to generate large-amplitude pressures
at various mean densitles to substantlate factors (b) and (d).

The lack of any method for calculating the attenuation constant
directly limits the general application of the preceding equations. An
experimental determination of a« is possible, however, by making
measurements on & simple system (long tube with no restriction and
negligible instrument volume) and then applying the experimentally
determined value to the calculatlon of more complicated systems. For
the range of pressure amplitudes and frequencles covered in this iInvesti-
gation, values of o have been determined experimentally and the results
are given in the section entitled "Experimental Investigation."

It is Important to note that in many practical applications wherein
the primary consideratlon 1s an estimate of rescnance and sntiresonance
frequencies, sufficient accuracy can be secured by assuming that the
attenuation constant o 1s negligible. In such cases, the equations
presented for tube systems having zero attenuation can be applied with
consequent reduction of computation time.

EXPERIMENTAL INVESTIGATION

Apparatus and Tests

A schema of the test setup is glven in figure 6. The pressure
source used in these tests consisted of a piston, driven by a variable-
speed electric motor, In a cylinder surrounded by a clearance volume.
Adjustment of pressure amplitude was achieved by varying the clearance
volume or altering the stroke of the crank and connecting-rod mechanism
driving the plston. Directly connected to the cylinder was a standard
NACA mechanical-optical pressure recorder, which was used as a pressure
standard. Thils instrument consists of & corrugated diaphragm assembly
having an internal volume of 0.2 cubic inch surrounded by a reference
volume of approximately 1.2 cubic inches. Deflections of the diaphragm
are converted by means of a bell-crank tilting-mirror linkage -into
deflections of a record line on a photographic film. The natural
frequency of this instrument was sufficiently high to require no correc-
tlons for its response. Another connection from the pressure generator
led to the pressure system under test. The pressure systeme tested
consisted of various lengths of neoprene pressure tublng varying in

diameter from-%—inch tolfg—inch inside diameter with connected restrictions
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and volumes. The pressure generator supplled oscillating pressure ampli-
tudes up to.f 10 inches of water at frequencies ranging from O to

0 cycles per second. Records of the generated pressure as determined by
the reference-pressure cell, pressures existing in the test Instrument,

and fb-second timing marks were all recorded on the same film. The tests

were made in the Flight Instrument Development Section of the Langley
Instrument Research Division.

Results of Amplitude Response Tests

Simple tube system with negligible instrument volume.- Figures 7

and 8 summarize the results of tests made with %~inch and {%—inch-inside-

diameter tubes with applied pressure amplitudes of ¥ 10 inches of water.
The length of tube, given in wave lengths, is calculated fram the
velocity of propagation as given in figure 6 and the relation a/f equals

wave length. In figure 7 the response of systems using %-inch-inside-

diameter tubing is seen to be such that large attenuation of pressure
amplitude occurs in the mailn portion of the frequency range up to 70 cycles

per second. Figure 8 indicates that the attenustion in i%-inch-inside—

diameter tubes 1s small enough so that, with sulteble damping of the
resonance peaks, the response through a large frequency range can be
made to approximate unity. Tests made on other tube lengths not shown
in these figures fair in well with the plotted curvee.

Based upon figures 7 and 8 and equation (8), the attenuation
constant o was determined for both tube dlameters. The attenuation
constant was found to vary with the square root of the applied frequency.

Values of the attenuation factor A are plotted In figure 9. The
value of A as celculated fram equation (8) ie apparently not constant
for the shorter tube lengths; however, this effect ig actually caused
by the finite volume of the pressure capsule. The velues of A.
asymptotically approach their true value for the longer tubes since the
attenuation in the tube becames the determining factor in the over-all
response. The values of a thus determined are az follows:

For %-inch-inside-diameter tubes,

a = OoOlAVf—

For i%-inch-inside-diameter tubes,

= 0.0065\{f
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The curves of figures 10 and 11 have been calculated on the basis
of the attenuation factor for the {%-inch-inside—diameter tube. The

variation between the calculated response curves for zero Instrument
volume and for 0.21 cublc inch instrument volume shows the effect of

the volume of the Instrument used (fig. 10) . The experimental points

for the 10-foot tube with an instrument volume of 0.21 cubic inch
approximste a theoretical curve for a 10-foot tube with no volume
attached which has an attenuation constant equal to 0.01. The comparisocn
shown in figure 10 between these experimental points and the theoretical
curve for zero volume indlcates that except at resonance frequencles a
relatively large varilation in the attenuation factor causes only minor
changes in the general characteristics of the response curve.

Tube with inlet restriction.- Figure 11 illustrates the correlation
between the calculated response curves and the experimental data tor a
10-foot tube with and without an inlet restrictlon subjected to
pressure amplitudes of * 10 inches of water. The damping restriction,
as previously indicated, is placed at the open tube end. The main effect
of the damper at resonance frequencies and the almost negligible effect
at antiresonance frequencles should be noted on these curves. Inasmuch as

the experimental data for a é%-inch-inside-diametez; %—inch-long connector

seem to correspond more exactly to the calculated values for a ccnnector
of twice this length, the losses 1n this connector can be assumed to be
larger than those predicted by equation (13). These added losses are
attributed to the 1nlet and exlt losses of the connector and to the fact
that steady laminar flow does not exlst 1In the connector.

Tube with appreciable instrument volume.- Figure 10 also 1ndicates
the response to sinusoildal pressure ampllitudes of + 10 inches of water

of a 10-foot length of i%-inch-inside—diameter tubing with volumes

of 3.05 cubic inches and 6.1 cubic inches added adjacent to the recording
instrument. The correlation between calculated and experimental curves
indicates that although a high percentage accuracy has not been

achleved, good agreement exists insofar as response-curve shape and
attenuation characteristics are concerned. The effect of increasing

the recording instrument volume is seen to be a lowering of the

resonant frequency of the system and a decrease in amplitude of the
recorded pressures throughout most of the frequency range.

Effect of some reference pressure systems on the response character-
1stics of a pressure system.- When pressure recorders are connected to

both a pressure measuring system and a reference pressure system, appreci-
able Interaction and energy transfer may occur, which can alter signifi-
cantly the response of the entire system. The calculation of the

response of such systems is considered 1nadvisable since it is necesgsarily
tedious and the accuracy .is questionable. Figure 12 is included as
reprecentative of the interactions which occurred with the capsule
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employed 1n these tests in a test setup designed so that the interaction
wag very pronounced. The variations in the response curves are typical
of coupled systems which may be encountered in practice. The equivalent
pressure and electrical systems are schematically shown in the same
figure. It should be noted that these effects may be decreased or
eliminated by enlarging the reference volume surrcunding the measuring
element so that 1ts equivalent electrical capaclty becomes extremely
large and approaches a short circuit.

Results of Phase-Shift Determination

Figure 13 illustrates the correlation between calculated and experi-
mental lag curves for 10 feet of i%-inch-inside—diamsﬁer tubing with

various added volumes. The response curves of figure 10 show that the
following general characteristics are cammon to the leg curves of figure 13:

(1) The phase angle shifts relatively slowly until a resonance
frequency 1is reached, at which time the phase changes rapidly through 90°.

(2) The lag remains almost constant at approximstely 180° from
frequencies above resonance through the first antiresonance frequency
and then increases to larger values.

(3) The rate of change of lag angle with increasing frequency becomes
more and more linear as the magnitude of the amplitude response at
resonance becomes smaller and smaller.

Sample Calculation

Equation (20) has been presented in such form thet the response and
lag may be arithmetically calculated. Table 1 indicates the calculations

necessary for the determination of the response of 10 feet of i%-inch-

inside-dlameter tubing with an added volume of 0.61 cubic inch. All
computations are arithmetic except that for column é9 , which may be
done graphically with 1ittle labor. The determinsticn of the response
for various other added volumes can be easily made by recalculating

columns @, @, and@ only.

CONCLUSIONS

A method has been developed for estimating the dynamic response of
pressure systems subjected to steady-state oscillating pressures which
can be applied to the design of these systems either to secure good
responge over a degired frequency range or to eliminate unwanted
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resonances when only a mean pressure level 1s desired. Although no
method of predicting the attenuation constant of various tubing under
all pressure conditions has been presented, this attenuation constant
may be determined experimentally in a simple tube system and used for
the design of other more complicated systems.

Even In long tubes of small dismeter (that is, 20 ft of i%—in.-I.D.

tubes), resonances can occur which cannot be ignored in the interpreta-
tion of recorded data. The resonance frequency range for tubes of
approximately this length 1s the fregquency range in which airplane
buffeting may occur and airplanes passing through contiguous atmospheric
gusts may also be subJected to pressure cycles in this renge. The
direct Interpretation of such recorded data without reference to the
effect of the recording system will lead to erroneous results.

It can be concluded from the material presented that for accurate
dynamic-pressure measurements the first resonant frequency of the
pressure-measurement system should be kept well above the highest
pressure frequency to be measured. This result can usually be accom-
pliched only by installing the pressure sensing element as close to the
point of measurement as possible. When such installation is not feasible,
the principles presented in this paper should be applied to the design
of an appropriate pressure system. The errors inherent in such a method
should be mitigated whenever possible by a direct calibration under
condltions of use.

Lengley Aeronautical Laboratory
National Advisory Committee for Aeronautlcs
Langley Air Force Base, Va., January 7, 1949
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Figure 1.~ Response and phase shift 1n system having negligible instrument
volume.
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Figure 2.— Regponse and phase shift in syastem with various inlet restric—
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Figure 5.~ Velocity of propagation in tube based on Rayleigh formula and
free—alr velocity of 1000 feet per second.
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Figure 6.~ Schema of test setup and NACA pressure recorders.
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Figure 7.— Response of %winch—inside—diameter “ubing to sinusoidal

pressure variations. Impressed frequency, O to 70 cps; pressure
amplitudes of 10 inches of water.
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Figure 8.— Response of %—inch—inside—dia.meter tubing to sinusoidal
1
pregsure variations. Impressed frequency, O to 70 cps; pressure
amplitudes of 10 inches of water.
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FPigure 10.,— Response of 10 feet of %—inch—inside—diameter tubing with
1

various instrument volumes to sinusoidal pressure amplitudes of
+10 inches of water.
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Flgure 11.— Response of 10 feet of ;i—inch—inside—diameter tubing with
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and without reatrictions to sinusoidal pressure smplitudes of
*#10 inches of water.
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Figure 12.— Response of 2 feet of g-inch—inside—diambter tubing
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Flgure 13.-— Lag curves for 10 feet of-jé-inch—inside—diameter tubing
1

with various instrument volumes subjected to sinusoidal pressure
amplitudes of 210 inches of water.



